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Image restoration using the chiral Potts spin glass
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~Received 9 April 1999!

We report on the image reconstruction~IR! problem by making use of the random chiralq-state Potts model,
whose Hamiltonian possesses the same gauge invariance as the usual Ising spin glass model. We show that the
pixel representation by means of the Potts variables is suitable for the gray-scale level image which cannot be
represented by the Ising model. We find that the IR quality is highly improved by the presence of a glassy term,
besides the usual ferromagnetic term under random external fields, as very recently pointed out by Nishimori
and Wong. We give the exact solution of the infinite range model withq53, the three-gray-scale-level case.
In order to check our analytical result and the efficiency of our model, two-dimensional Monte Carlo simula-
tions have been carried out on real-world pictures with three and eight gray-scale levels.
@S1063-651X~99!15008-6#

PACS number~s!: 02.50.2r, 05.20.2y, 05.50.1q
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I. INTRODUCTION

Recently, statistical mechanical approaches to the p
lems of information science have attracted a large amoun
attention of researchers who are working in the field. Amo
these, particular interest has been given to techniques
which one tries to reconstruct an image from its corrup
version, e.g., sent by a defective fax, a fickle e-mail, e
since any data transmission through a channel is in princ
affected by some kind of noise. In the mathematical en
neering fields, the traditional way to obtain the optimal
covered image has been regarded as a sort of optimiza
problem. In this framework, one first constructs the ene
~cost! function so that this function represents the distan
between the original image and the recovered one as p
erly as possible; then, one minimizes it using suitable h
ristic methods likesimulated annealing@1#. In fact, Geman
and Geman@2# succeeded in constructing a method of ima
restoration using simulated annealing, and they discusse
detail the properties of its convergence including the optim
annealing schedule.

Successful results in this direction have been reached
means of the usual techniques of disordered spin syste
assuming that each spin is naturally associated to a pixe
bit. In language of the disordered spin systems, the opt
zation problems we just mentioned are naturally transla
into a search of the ground state for a system posses
many local minima of order exp(N). In contrast, Marroquin
et al. @3# found that the temperature of the system plays
important role for the image-recovering process. From
statistical mechanical point of view, each recovered ima
can be regarded as the equilibrium state of a random
system. Marroquinet al. @3# investigated the effect of the
temperature on the quality of image restoration by compu
simulation and found the optimality of finite-temperature im
age restoration. Recently, this finite-temperature effect
image restoration was checked in a more careful way
Pryce and Bruce@4#, although these works were restricted
PRE 601063-651X/99/60~3!/2547~7!/$15.00
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numerical simulations. In the context of the convolution
error-correcting codes, Ruja´n @5# proposed finite-temperatur
decoding in which we regard the sign of the local magne
zation at a specific temperature~this temperature is wel
known as theNishimori temperature@6# in the field of spin
glasses! as the correct bit. Recently Nishimori and Wong@7#
pointed out that the optimal restoration of an image is a
obtained at some specific temperature and showed that im
restoration~IR! and error-correcting codes~ECC! theory can
be treated within a single framework. Indeed, to the usua
Hamiltonian, ferromagnetic, and random field terms, th
added a spin-glass term borrowed from the ECC theory@8#
used for aparity check. They could exactly solve the infinite
range spin model and find the optimal values of the tempe
ture and field~referred to ashyperparametersfrom now on!
at which the best retrieval quality is achieved. However, th
works are restricted to the case of Ising spin systems an
this sense they are able to restore black-white pictures.
the other hand, there remain many open questions abou
restoration of multicolor images or, somehow equivalen
gray-toned images.

This kind of problem has been also widely studied in t
context of neural networks with multistate neurons, able
store and retrieve gray-scaled patterns~see@9# and references
therein!. For our purposes, we therefore map the set of
pixels ontoq-state~chiral! Potts spins, with a ferromagneti
Hamiltonian in the presence of a random field~conventional
IR! and, further on, a glass term~ECC-like term!. The choice
of the chiral Potts Hamiltonian is motivated by the fact tha
exhibits the same gauge invariance as the Ising glass
though a work for the usual random Potts model is un
consideration. Here, we show that, as in the Ising case@7#,
the presence of the glass term significantly increases
quality of the reconstructed image. We should mention t
several remarkable studies about IR using the Potts m
have been made by several authors. However, their wo
mostly depend on computer simulations. In addition, th
methods ~mean field annealing@10#, cluster algorithm
2547 © 1999 The American Physical Society
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@11,12#, etc.! are devoted to restorations at zero temperatu
Therefore, it seems that there exist a lot of open quest
about IR using the Potts model, especially, about the per
mance of finite-temperature restoration.

In the next section, we will introduce our model with
the image restoration theory and adopt the overlap as a m
sure of the restoration quality. In Sec. III, we will discuss t
infinite-range model and give the exact expression for
overlap as a function of the temperature and external fi
thus obtaining a relation between the temperature of so
image and that of the restoration temperature. We shall
see an improvement of the restoration quality by adding
glassy term. Finally, in Sec. IV, guided by the infinite-ran
results, we will give explicit and realistic examples of ima
reconstructions for three and eight gray-scale pictures.

II. MODEL AND IR FORMULATION

As already mentioned in the Introduction, we choose
represent pixels of a gray-scaled image by means
q-component Potts spin variables. The usual Potts Ha
tonianH52(ds is j

admits a complex representation@13# by
means of the identity

ds is j
5

1

q (
r 50

q21

~s i !
r~s j !

q2r , ~1!

where each spin takes on one of theq roots of unity:

s i5expS 2p i

q
Ki D ~Ki50, . . . ,q21!. ~2!

From now on, we will use the notation$j% for the original
pixels and$s% for the variables of the recovering proces
Let us now send the original image through a noise chan
not only by the form ofj i

r itself but also by the following
products j i

rj j
r* 5j i

rj j
q2r . Without loss of generality we

raised the spins and their products to some powerr, since
this corresponds only to a rotation in the complex circle. T
reasons for this choice will be clear soon. For this expr
sion, the output ($t (r )%,$J(r )%) is stochastically determine
by the channel. For instance, in the case of a Gaussian c
nel ~GC! the output functionPout($J

(r )%,$t (r )%u$j%) is given
by

Pout~$J
(r )%,$t (r )%u$j%!

5
1

~2pJ!NB/2

1

~2pt!N/2

3expF2
1

2J2 (
( i j )

(
r 50

q21

~Ji j
(r )2J0j i

rj j
q2r !

3~Ji j
(r )* 2J0j i

q2rj j
r !G

3expF2
1

2t2 (
i

(
r 50

q21

~t i
(r )2t0j i

r !~t i
(r )* 2t0j i

q2r !G ,

~3!
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whereJi j
(r ) andt i

(r ) are complex numbers which satisfy

~Ji j
(r )!* 5Ji j

(q2r ) ~t i
(r )!* 5t i

(q2r ) ~4!

in order to ensure the realness of the sums in Eq.~3!.
Obviously, if a noise-free transmission could be achiev

we would obtaint i
(r )5j i

r andJi j
(r )5j i

q2rj j
r . The conditional

probabilityP($s%u$J(r )%,$t (r )%), which is the probability that
the source sequence is$s% provided that the outputs are$J%
and$t%, according to the Bayes theorem reads

P~$s%u$J(r )%,$t (r )%!;expS bJ

q (
( i j )

(
r 51

q21

Ji j
(r )s i

(r )s j
(q2r )

1
h

q (
i

(
r 51

q21

t i
(r )s j

(q2r )D Pd~s!,

~5!

wherePd(s) is a model of the prior distributionPs(j), that
is,

Pd~s![expS bd

q (
( i j )

(
r 51

q21

s i
(r )s j

(q2r )D . ~6!

Our choice of the above prior distribution~6! is due to the
assumption that in the real world, images should be loca
smooth. From this point of view, the distribution~6! is suit-
able because it gives a high probability if the neare
neighboring sites take the same value.

For the Ising model, in order to get the restored pixels
of the average quantities, the pixel at sitei ~to be denoted as
S i) is naturally taken as the sign of the local magnetizati
This means that the restored pixel is chosen asS511 (S
521) if the spin points upward~downward! on average at
the equilibrium. For our model, instead, since the value
the local magnetization is not simply confined to the inter
@21,1#, but runs all over the complex circle, we introduc
the generalized restored variable

S i~^s i&!5expF i (
a50

q21
2p

q
aJa~u i !G , ~7!

with

Ja~x!5QS x2
2p

q
a1

p

q D2QS x2
2p

q
a2

p

q D , ~8!

Q being the usual step function, and

u i5tan21S ^Re@s i #&

^Im @s i #&
D . ~9!

In simpler words,S i is the closest spin on the circle to th
value of the local magnetization ^s i&[^Re@s i #&
1 i ^Im@s i #&. Forq52, it is straightforward to check that Eq
~7! reduces to a sign function up to a normalization consta
The quantitieŝ Re@s i #& and ^Im@s i #& are the average ove
the Boltzmann distributione2Heff with the following effec-
tive Hamiltonian@14#:
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Heff2
bJ

q (
( i j )

(
r 51

q21

Ji j
(r )~s i !

r~s j !
q2r

2
bd

q (
( i j )

(
r 51

q21

~s i !
r~s j !

q2r2h(
i

(
r 51

q21

t i
(r )s j

q2r .

~10!

Condition ~4! gives the above Hamiltonian the same sp
gauge symmetry as Ising spin glass, thus suppressing
spontaneous magnetization at low temperature which
present in the usual random Potts model. For the restora
purposes, the random field term aligns the spins accordin
the corrupted picture, whereas the ferromagnetic term
sures the smoothness, by suppressing the isolated p
within one small cluster. Therefore, a balance betweenbd
and h will help us to reconstruct the original picture we
The first term, instead, has been recently introduced in
problem of image restoration by Nishimori and Wong@7#
and this term has been well known as theparity check codes
in the field of error-correcting codes. Obviously, this te
carries much more information about the original pictu
than the other two terms. Therefore, the performance of
image recovery is expected to be improved by this term.
a measure of the restoration quality, we shall adopt the
lowing overlapM:

M5F1

q (
r 50

q21

j i
q2rS i

r G
$j,J,t%

[
1

q (
r 50

q21

(
j

(
J

(
t

Pout~$J
(r )%,$t (r )%u$j%!P~j!j i

q2rS i
r ,

~11!

in which (1/q)( r 50
q21j i

q2rS i
r at each single site gives 1 if th

original spin is in the same state as the restored one, a
otherwise. Here the dependence on the local magnetizati
buried in the angleu i , given by Eq.~9!, and the sum over al
the sites is understood. The main goal of this paper is
maximize the overlapM as a function of the temperature
(bJ andbd) and the external fieldh ~referred to as an esti
mate of thehyperparameters!. In the next section, we will
start with an exactly solvable model, that is, an infinite-ran
version of the Potts spin glass.

III. MEAN FIELD SOLUTION

We will now investigate the performance of our mod
within the mean field approximation; viz., each spin is infl
enced by all the others. As the source image, we will c
sider a ferromagnetic state generated by a Boltzmann di
bution at some finite temperatureTs . For the sake of
simplicity, we will restrict ourselves to the case ofq53,
although the results can be generalized to any value ofq. We
thus assume that the original set of pixels$j% is generated by
a ferromagnetic three-state Potts Hamiltonian with proba
ity

P~j!5
1

Zs~bs!
expF bs

2N (
i , j

~j ij j* 1j i* j j !G , ~12!
he
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whereZs(bs) is a normalization constant andbs is the in-
verse source temperature. According to the conditional pr
ability, the observables are computed as

@^ f &#$j,J,t%5(
j

(
J

(
t

P~$J(r )%,$t (r )%u$j%!

3P~j!
Trs f e2Heff

Z , ~13!

with

Z [ Trsexp~2Heff!. ~14!

It is rather straightforward to average out the disorder
means of the well-known replica trick@16# and, assuming a
replica symmetry ansatz and isotropy~no dependence onr ),
the saddle point equations for the order parameters are g
by

@^s i
r&#[m5

1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~15!

@Re@j i #^s i
r&#[t15

1

Zs
(

j
Re@j#ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~16!

@ Im@j i #^s i
r&#[t25

1

Zs
(

j
Im@j#ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~17!

@^s i
r&^s j

q2r&#[Q5
1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 1

Z2~j!
@Zcos

2 ~j!

1Zsin
2 ~j!# . ~18!

Herems
(1) andms

(2) are simply the real and imaginary com
ponents of the source magnetization, viz., the usual non
dom Potts model@13# mean field equations

@Re@j i ##[ms
(1)5

1

Zs
~ebsms

(1)
2e2bsms

(1)/2

3cosh@~A3/2!bsms
(2)# !, ~19!

@ Im@j i ##[ms
(2)5

1

Zs
A3e2bsms

(1)/2
sinh@~A3/2!bsms

(2)#

~20!

and
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Zs5ebsms
(1)

12e2bsms
(1)/2

cosh@~A3/2!bsms
(2)#, ~21a!

Zcos~j!5eU(j)2e2U(j)/2coshV, ~21b!

Zsin~j!5A3e2U(j)/2 sinhV, ~21c!

Z~j!5eU(j)12e2U(j)/2coshV, ~21d!

with

U5uFbJ
2J2

q2
Q1t2h2G 1/2

1
bd

q
m1

bJJ0

q
@ t1Re@j#1t2Im@j##

1t0h Re@j#, ~22a!

V5
A3

2

bJJ

q
Q1/2v. ~22b!

Finally, the overlapM is expressed as the weighted avera

M5
1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])E

S(j)

du

Ap

dv

Ap
e2u22v2

,

~23!

receiving contributions from the followingq53 regions in
the complex circle:

S~1!5H u,vU2 p

3
<tan21

Zsin

Zcos
<

p

3
ùZcos.0J , ~24a!

S~e2p i /3!5H u,vUS p

3
<tan21

Zsin

Zcos
<

p

2
ùZcos>0,Zsin.0D

øS 2
p

2
<tan21

Zsin

Zcos
<0ùZcos<0,Zsin>0D J ,

~24b!

FIG. 1. OverlapM as a function ofTd for different values ofh.
The maximum valueMmax does not depend onh.
e

S~e4p i /3!5H u,vUS p

2
<tan21

Zsin

Zcos
<2

p

3
ùZcos.0,Zsin>0D

øS 0<tan21
Zsin

Zcos
<

p

2
ùZcos,0,Zsin<0D J .

~24c!

We first assume that the exchange term is absent (bJ50)
@15#; that is, no redundancy is fed into the channel. In t
case, the saddle point equations~15!–~18! are drastically
simplified and the overlap~23! simply reads

M5
ebsms

Zs
ErfF2A2

bdm1t0h

th G
1

e21/2

Zs
H 12ErfF2A2

bdm2t0h

th G J , ~25!

with the magnetization given by

m5
ebsms

Zs
E du

Ap
e2u2

3
12exp@2 3

2 ~uth1bdm/q1t0h!#

112 exp@2 3
2 ~uth1bdm/q1t0h!#

1
2e2bsms/2

Zs
E du

Ap
e2u2

3
12exp@2 3

2 ~uth1bdm/q2t0h/2!#

112 exp@2 3
2 ~uth1bdm/q2t0h/2!#

, ~26!

where we defined Erf(x)[*x
`e2x2

dx/Ap.
The problem is thus reduced to a one-dimensional mo

corresponding to an Ising model in which the length of sp
turns out to be (11,21/2) instead of (11,21). This is not

FIG. 2. OverlapMmax as a function of the exchange temperatu
bJ for several values ofJ0. The overlap improves even for sma
values of the exchange term.
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surprising if one thinks that the fluctuations along the ima
nary axis are governed only by the glassy term; meanwh
the magnetic field acts along the real direction. In Fig. 1,
plotted the overlapM as a function ofTd for the some values
of h. It is straightforward to check that the maximum val
of the overlapMmax does not depend on magnetic fieldh,
since at the stationary point (]M /]bd50) m is proportional
to the magnetic field

1

2
bsms5

1

3
mbd

t0

t2h
1

1

4

t0
2

t2
. ~27!

This feature holds also for the Ising case, although the
tionary equation~27! is simpler:

FIG. 3. Upper left: original three-gray-scale-level image. Upp
right: 15% of noise. Lower left: restoration without exchange ter
Lower right: restoration with exchange term
.

FIG. 4. OverlapM as a function of the decoding temperatureTd

at bJ50 ~left!. The system size is 64372 and each line is average
over four different samples.
-
e,
e

a-

bsms5mbd

t0

t2h
. ~28!

Expression~27! is thought to be valid only for the infinite
range model, as confirmed in the next section by numer
results ind52.

Now we set the decoding temperature at the optim
value, that is,M (Td

opt)[Mmax, and we switch the exchang
interaction (bJÞ0) as depicted in Fig. 2. We notice that als
a small amount of redundancy highly improves the value
the overlapMmax which quickly increases and slowly de
creases, after the peak; meanwhile, the exchange term
comes dominant to the ferromagnetic one.

r
. FIG. 5. Overlap as a function ofbJ . We set the parameter
(H,Td)5(0.6,0.2) which gives the maximum in the absence of
exchange term.

FIG. 6. Upper left: original three-gray-scale-level image. Upp
right: 30% of noise. Lower left: restoration without exchange ter
Lower right: restoration with exchange term.



to
se
th
u
te
ef
il

ion
I
a

be
o
le

to

of

is
at
nd

ated

in
ht-
er

erm

e
m

e
m

-

s
the

2552 PRE 60DOMENICO M. CARLUCCI AND JUN-ICHI INOUE
IV. MONTE CARLO SIMULATIONS
FOR REAL-WORLD PICTURES

Although for mere restoration aims it is not wise
smoothen two points far away from each other, we shall
that the infinite-range model provides a useful guide for
more interesting case of real-world pictures, since the res
remain qualitatively similar. We thus carried out Mon
Carlo simulations for realistic pictures with a short-range
fective Hamiltonian. In this case, the ferromagnetic term w
be concerned only with points within the range of interact
and two points far away will not influence each other.
would be extremely interesting to study the restoration qu
ity as a function of the interaction radius, but this goes
yond the aim of the present work and we limit ourselves t
first-nearest-neighbor interaction Hamiltonian. Therefore
us consider a simpleq53 gray-scale-level picture~upper left

FIG. 7. Upper left: original eight-gray-scale-level image. Upp
right: 20% of noise. Lower left: restoration without exchange ter
Lower right: restoration with exchange term.

FIG. 8. Upper left: original eight-gray-scale-level image. Upp
right: 30% of noise. Lower left: restoration without exchange ter
Lower right: restoration with exchange term.
e
e
lts

-
l

t
l-
-
a
t

of Fig. 3!, where each pixel has been randomly flipped
another value with some probability, say,p50.15 ~upper
right of Fig. 3!. The curves shown in Fig. 4 are the result
the restoration process without the glassy term, that is,bJ
50, at different values of the ratioH5h/bd . Here the maxi-
mum value of the overlap is achieved aroundHmax[h/bd
;0.6 andTd;0.2 and the corresponding restored image
drawn in the lower left of Fig. 3. Adding the glassy term
Hmax fixed improves drastically the value of the overlap a
the quality of the restored image~lower right of Fig. 3!,
drawn at the peak of Fig. 5. The same procedure is repe
in the presence of higher noise,p50.30, at the sameHmax
and bJ;max and the results of the restoration are shown
Figs. 6. Finally, we applied the same algorithm to an eig
gray-scale-level picture with 20% and 30% of noise, upp
images in Figs. 7 and 8. The results without exchange t

r
.

r
.

FIG. 9. OverlapM as a function of the decoding temperatureTd

at bJ50 ~left!. The system size is 933100 and each line is aver
aged over four different samples.

FIG. 10. Overlap as a function ofbJ . We set the parameter
(H,Td)5(0.6,0.1) which gives the maximum in the absence of
exchange term.
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are shown in shown Fig. 9. Once again we find a maxim
for some values ofTd andH and the corresponding restore
images are shown in Fig. 10.

V. CONCLUSIONS

In this paper, we investigated the possibility of gra
scaled image restoration using the chiral random P
model. We solved exactly the infinite-range version, th
deriving an explicit expression of the overlap as a function
the estimates of the hyperparametersh, bd , andbJ . In the
absence of the glassy term, we obtained an exact rela
between the restoration temperaturebd and the source tem
peraturebs which gives the maximum value of the overla
This seems a highly nontrivial result because it is natural
us to assume that the best recovery of the image shoul
achieved forbd5bs , as it turns out to be true for the Isin
case@7#. The Monte Carlo results on real pictures confirm
the expected high improvement due to the presence of
redundancy, i.e., the glassy term. However, so far, in
prescription to recover a corrupted image at the best rest
tion values, one is supposed to know the original data
other words, the receiver has to meet the sender at least
c

ts
s
f

on

r
be

he
r
a-
n
ce

to find the optimal restoration values. Only after that will th
other receivers be able to get an optimal restoration for
same image, provided that the channels remain, at l
qualitatively, unchanged. In this sense, it would be extrem
useful to provide somea priori criteria ~the receiver will not
be supposed to meet the sender! for the optimum values of
the hyperparameters, once that some intrinsic characteri
~e.g., temperature! of the original image are known. There
fore, in order to check if relation~27! still holds down to two
dimensions, we restoredq53 ferromagnetic snapshots ge
erated at some known temperature. However, so far we h
not yet obtained reliable results and detailed investigation
this direction will be reported in a forthcoming paper.
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